Screening the CALIPSO aerosol profiles based on CAD score

Use this Forum to find information on, or ask a question about, NASA Earth Science data.
Post Reply
shravu
Posts: 11
Joined: Thu May 04, 2023 6:29 am America/New_York
Answers: 0

Screening the CALIPSO aerosol profiles based on CAD score

by shravu » Thu Jan 11, 2024 7:28 am America/New_York

Hello,
I am trying to screen the extinction coefficient profiles from CALIPSO data (CAL_LID_L2_05kmAPro-Standard-V4) based on CAD score (CAD score>-20) and plot it vs altitude (https://hdfeos.org/zoo/MORE/LaRC/CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-21.2021-01-10T21-34-11ZN.hdf.py.png). I took help from https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/tools/files/Generate_Mean_Extinction_Profile_v3.pdf but this is in MATLAB. I am unable to do it in python.

Can anyone help me with this.

Thanks.

Filters:

ASDC - cheyenne.e.land
Subject Matter Expert
Subject Matter Expert
Posts: 133
Joined: Mon Mar 22, 2021 3:55 pm America/New_York
Answers: 1
Has thanked: 1 time
Been thanked: 9 times

Re: Screening the CALIPSO aerosol profiles based on CAD score

by ASDC - cheyenne.e.land » Fri Jan 12, 2024 7:36 am America/New_York

Hello,

Thank you for your interest in CALIPSO data.

We're currently working on python code to get you what you need. Thank you for your patience.

Regards,
ASDC

ASDC - cheyenne.e.land
Subject Matter Expert
Subject Matter Expert
Posts: 133
Joined: Mon Mar 22, 2021 3:55 pm America/New_York
Answers: 1
Has thanked: 1 time
Been thanked: 9 times

Re: Screening the CALIPSO aerosol profiles based on CAD score

by ASDC - cheyenne.e.land » Fri Jan 12, 2024 9:42 am America/New_York

Hello,

We used code made by HDF-EOS that graphs the Extinction Coefficient v Altitude and revised it to only plot values based on the CAD Score greater than -20.

Code: Select all

import os
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from pyhdf import HDF, SD, VS
from pyhdf.SD import SD, SDC

FILE_NAME = 'CAL_LID_L2_05kmAPro-Standard-V4-51.2023-01-01T04-38-40ZN.hdf'
DATAFIELD_NAME = 'Extinction_Coefficient_532'
cad_score = 'CAD_Score'
sd = SD(FILE_NAME, SDC.READ)
hdf = HDF.HDF(FILE_NAME)
vs = hdf.vstart()

xid = vs.find('metadata')
altid = vs.attach(xid)
altid.setfields('Lidar_Data_Altitudes')
nrecs, _, _, _, _ = altid.inquire()
altitude = altid.read(nRec=nrecs)
altid.detach()
alt = np.array(altitude[0][0])

# Read dataset.
data2D = sd.select(DATAFIELD_NAME)
data2D_cad = sd.select(cad_score)

# Read attributes.
attrs = data2D.attributes(full=1)
attrs_cad = data2D_cad.attributes(full=1)
fva=attrs["fillvalue"]
fva_cad=attrs_cad["fillvalue"]
fillvalue = fva[0]
fillvalue_cad = fva_cad[0]
ua=attrs["units"]
units = ua[0]
vra=attrs["valid_range"]
valid_range = vra[0].split('...')

# Note: CAD_Score is a 3-D array of the size [#profiles, # altitude bins, 2]. 
#The first dimension, [ : , : , 0], corresponds to the standard altitude array of the Profile Products. 
#Thus, below 8.3 km, the first dimension contains the descriptive flags of the higher of the two full resolution 
#(30 m) bins that comprise the single 60 m bin reported in the Profile Products. 
#Meanwhile, below 8.3 km, the second dimension [: , : , 1] contains the descriptive flags for the lower of the two 
#30 m range bins. Above 8.3 km, where the range resolution of the Level 1 data is 60 m or greater, 
#the descriptive flags for each single 60 m (or 180 m) range bin are replicated in both array elements.

data = data2D[:,:]
data_cad = data2D_cad[:,:,0]

# Filter fill value and valid range. See Table 66 (p. 116) from [1]
data[data == fillvalue] = np.nan
data_cad = data_cad.astype('float')
data_cad[data_cad == fillvalue_cad] = np.nan

#Filter CAD_Score to get only values greater than -20
data_cad[data_cad <= -20] = np.nan

#Filter Extinction_Coefficient_532 based on CAD_Score greater than -20
data[np.isnan(data_cad)] = np.nan


# Apply the valid_range attribute.
invalid = np.logical_or(data < float(valid_range[0]),
                        data > float(valid_range[1]))
data[invalid] = np.nan
datam = np.ma.masked_array(data, mask=np.isnan(data))
datam = np.mean(datam, axis=0)
vs.end()
sd.end()

plt.plot(datam, alt)
plt.ylabel('Altitude (km)')
title = 'Extinction_Coefficient_532 Based on CAD Score greater than -20'
basename = os.path.basename(FILE_NAME)
plt.xlabel('{0} ({1})'.format('mean', units))
plt.title('{0}\n{1}'.format(basename, title))
fig = plt.gcf()
pngfile = "{0}.py.png".format(basename)

fig.savefig(pngfile, dpi=400)

# Reference
# [1] https://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_Rev4x92.pdf
Here is what output graph should look like:
Image

Update: Had to make a quick revision to the code due to an error. Above is the new image.

Post Reply